Bank Soal Matematika SMA Pertidaksamaan Dua Variabel

Soal

Pilgan

Daerah penyelesaian dari pertidaksamaan y3x1y\le3x-1 adalah ....

A

B

C

D

E

Pembahasan:

Langkah-langkah mencari daerah penyelesaian dari pertidaksamaan linear dua variabel adalah sebagai berikut.

Langkah pertama adalah melukis garis pembatas

Garis pembatas pada pertidaksamaan di atas adalah y=3x1y=3x-1

Cara melukis garis pembatas dengan mencari titik potong garis dengan sumbu xx dan sumbu yy

Titik potong sumbu yy

x=0,x=0, maka

y=3(0)1y=3\left(0\right)-1

y=01y=0-1

y=1y=-1

sehingga diperoleh titik potong (0,1)\left(0,-1\right)

Titik potong sumbu xx

y=0,y=0, maka

3x1=03x-1=0

3x=13x=1

x=13x=\frac{1}{3}

sehingga diperoleh titik potong (13,0)\left(\frac{1}{3},0\right)

Selanjutnya, lukis garis pembatas dengan ketentuan:

Jika pertidaksamaan memuat tanda << atau >> , maka garis pembatasnya digambar dengan garis putus-putus

Jika pertidaksamaan memuat tanda \le atau \ge , maka garis pembatasnya digambar dengan garis penuh.

Pada pertidaksamaan di atas memuat tanda \le sehingga garis pembatasnya berupa garis penuh.

Langkah kedua adalah melukis daerah penyelesaian

Perhatikan tanda koefisien yy dan tanda pertidaksamaan

Jika koefisien yy >0>0 maka bernilai positif (+)\left(+\right)

Jika koefisien yy <0<0 maka bernilai negatif ()\left(-\right)

Jika tanda pertidaksamaan berupa >> atau \ge maka bernilai positif (+)\left(+\right)

Jika tanda pertidaksamaan berupa << atau \le maka bernilai negatif ()\left(-\right)

Lakukan perkalian tanda koefisien dengan tanda pertidaksamaan

(+)×(+)=(+), \left(+\right)\times\left(+\right)=\left(+\right),\ maka diarsir di atas garis pembatas

()×()=(+), \left(-\right)\times\left(-\right)=\left(+\right),\ maka diarsir di atas garis pembatas

(+)×()=(), \left(+\right)\times\left(-\right)=\left(-\right),\ maka diarsir di bawah garis pembatas

()×(+)=(), \left(-\right)\times\left(+\right)=\left(-\right),\ maka diarsir di bawah garis pembatas

Dengan demikian,

pada pertidaksamaan di atas koefisien y>0y>0 dan tanda pertidaksamaan berupa \le, maka hasil kalinya

(+)×()=()\left(+\right)\times\left(-\right)=\left(-\right), maka diarsir di bawah garis pembatas

Sehingga diperoleh daerah penyelesaian seperti berikut


K13 Kelas X Matematika Aljabar Sistem Pertidaksamaan Dua Variabel Pertidaksamaan Dua Variabel Skor 2
Matematika Wajib LOTS Teknik Hitung
Video
16 Maret 2020
Sudut | Matematika | Kelas IV
Rangkuman
08 April 2020
Bab 5 | Bangun Datar | Matematika | Kelas 4

Siswa

Ingin latihan soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Guru

Ingin akses bank soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Soal Populer Hari Ini

Cek Contoh Kuis Online

Kejar Kuis

Cek Contoh Bank Soal

Kejar Soal