Bank Soal Matematika SMA Operasi Invers pada Fungsi

Soal

Pilgan

Diketahui f(x)f\left(x\right) dan g(x)g\left(x\right) adalah suatu fungsi, maka invers dari (fg)(x)\left(f\circ g\right)\left(x\right) adalah ....

A

1(f.g)(x)\frac{1}{\left(f.g\right)\left(x\right)}

B

1(fg)(x)\frac{1}{\left(f\circ g\right)\left(x\right)}

C

(f1g1)(x)\left(f^{-1}\circ g^{-1}\right)\left(x\right)

D

(g1f1)(x)\left(g^{-1}\circ f^{-1}\right)\left(x\right)

E

1(gf)(x)\frac{1}{\left(g\circ f\right)\left(x\right)}

Pembahasan:

Secara umum invers dari komposisi (fg)(x)\left(f\circ g\right)\left(x\right) memenuhi sifat

(fg)1(x)=(g1f1)(x)\left(f\circ g\right)^{-1}\left(x\right)=\left(g^{-1}\circ f^{-1}\right)\left(x\right).

Dengan kata lain, invers dari komposisi dapat dicari dengan menentukan invers dari masing-masing fungsi kemudian dikomposisikan.

Jadi, invers dari (fg)(x)\left(f\circ g\right)\left(x\right) adalah (g1f1)(x)\left(g^{-1}\circ f^{-1}\right)\left(x\right).

Video
16 Maret 2020
Sudut | Matematika | Kelas IV
Rangkuman
08 April 2020
Bab 5 | Bangun Datar | Matematika | Kelas 4

Siswa

Ingin latihan soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Guru

Ingin akses bank soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Soal Populer Hari Ini

Cek Contoh Kuis Online

Kejar Kuis

Cek Contoh Bank Soal

Kejar Soal