Bank Soal Matematika Wajib SMA Pertidaksamaan Rasional

Soal

Pilihan Ganda

Semua bilangan riil xx yang memenuhi x+2xx+3x2\frac{x+2}{x}\le\frac{x+3}{x-2} adalah ....

A

x<43x<-\frac{4}{3} atau x>2x>2

B

43x<2-\frac{4}{3}\le x<2

C

43x<0-\frac{4}{3}\le x<0 atau x>2x>2

D

x<43x<-\frac{4}{3} atau 0<x<20<x<2

E

x<0x<0 atau x>2x>2

Pembahasan:

Diketahui:

Pertidaksamaan x+2xx+3x2\frac{x+2}{x}\le\frac{x+3}{x-2}

Ditanya:

Solusi pertidaksamaan?

Dijawab:

Pertidaksamaan rasional dalam bentuk pecahan memiliki bentuk umum

f(x)g(x)0, f(x)g(x)>0, f(x)g(x)<0\frac{f\left(x\right)}{g\left(x\right)}\ge0,\ \frac{f\left(x\right)}{g\left(x\right)}>0,\ \frac{f\left(x\right)}{g\left(x\right)}<0 , atau f(x)g(x)0\frac{f\left(x\right)}{g\left(x\right)}\le0

dengan f(x)f\left(x\right) dan g(x)g\left(x\right) berupa konstanta maupun polinom.

Ketika kita menjumpai pertidaksamaan yang tidak memiliki bentuk ini, langkah yang harus dilakukan adalah:

  1. Membuat salah satu ruas menjadi nol dengan "memindahkan ruas"
  2. Menyamakan penyebut
  3. Melakukan operasi matematika di bagian pembilang setelah menyamakan penyebut.
  4. Mencari pembuat nol dari kedua fungsi, yaitu f(x)=0f\left(x\right)=0 dan g(x)=0g\left(x\right)=0. Bisa juga dengan pemfaktoran jika bentuk fungsinya adalah fungsi kuadrat.
  5. Masukkan nilai pembuat nol tersebut ke garis bilangan. Pastikan di bagian penyebut tidak boleh sama dengan nol.

Pada soal, diketahui bentuk pertidaksamaan adalah

x+2xx+3x2\frac{x+2}{x}\le\frac{x+3}{x-2} ... (1)

sehingga dapat kita lakukan langkah-langkah seperti di atas.

x+2xx+3x20\frac{x+2}{x}-\frac{x+3}{x-2}\le0

(x+2)(x2)(x+3)(x)x(x2)0\frac{\left(x+2\right)\left(x-2\right)-\left(x+3\right)\left(x\right)}{x\left(x-2\right)}\le0

x24x23xx(x2)0\frac{x^2-4-x^2-3x}{x\left(x-2\right)}\le0

43xx(x2)0\frac{-4-3x}{x\left(x-2\right)}\le0

3x+4x(x2)0\frac{3x+4}{x\left(x-2\right)}\ge0 ... (2)

Dari pertidaksamaan (2), diketahui f(x)=3x+4f\left(x\right)=3x+4 dan g(x)=x(x2)g\left(x\right)=x\left(x-2\right).

Selanjutnya, kita cari pembuat nol untuk masing-masing fungsi.

f(x)=0f\left(x\right)=0

3x+4=03x+4=0

x=43x=-\frac{4}{3}

g(x)=0g\left(x\right)=0

x(x2)=0x\left(x-2\right)=0

x=0x=0 atau x=2x=2

Totalnya, ada tiga nilai pembuat nol di f(x)g(x)\frac{f\left(x\right)}{g\left(x\right)}. Selanjutnya, garis bilangan di bawah menunjukkan tanda tiap suku atau unsur di setiap rentang nilai yang dihasilkan dari ketiga titik pembuat nol tersebut. Nilai di setiap rentang dimasukkan ke pertidaksamaan (2)

Karena tanda pertidaksamaan adalah >>, kita cari hasil yang positif.

Pembuktian:

Misalkan pada 43x<0-\frac{4}{3}\le x<0, kita ambil nilai x=1x=-1 untuk dimasukkan ke pertidaksamaan (2).

3(1)+4(1)(12)0\frac{3\cdot\left(-1\right)+4}{\left(-1\right)\left(-1-2\right)}\ge0

3+4(1)(3)0\frac{-3+4}{\left(-1\right)\left(-3\right)}\ge0

130\frac{1}{3}\ge0 ... (3)

Karena hasil di ruas kiri positif, berarti rentang tersebut memang benar menghasilkan nilai positif. Selain itu, karena pernyataan (3) sesuai, kita dapat menyimpulkan bahwa solusi di rentang ini memenuhi pertidaksamaan.

Jadi, solusi pertidaksamaan adalah 43x<0-\frac{4}{3}\le x<0 atau x>2x>2

K13 Kelas X Matematika Wajib Aljabar Pertidaksamaan Rasional dan Irasional Satu Variabel Pertidaksamaan Rasional Skor 2
Teknik Hitung LOTS
Video
11 Januari 2022
Pertidaksamaan Rasional
Rangkuman
 
27 April 2021
Persamaan dan Pertidaksamaan Nilai Mutlak | Matematika | Kelas 10 | KD 3.1 & KD 4.1

Siswa

Ingin latihan soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Guru

Ingin akses bank soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Soal Populer Hari Ini

Cek Contoh Kuis Online

Kejar Kuis

Cek Contoh Bank Soal

Kejar Soal