Bank Soal Matematika SMA Peluang Suatu Kejadian

Soal

Pilgan

Rangga memiliki sebuah kotak yang berisi 5 kelereng merah, 4 kelereng kuning, dan 3 kelereng hijau. Jika Rangga akan mengambil tiga kelereng sekaligus, maka peluang terambil 2 kelereng berwarna hijau dan 1 kelereng berwarna kuning adalah ....

A

122\frac{1}{22}

B

1220\frac{1}{220}

C

312\frac{3}{12}

D

12220\frac{12}{220}

E

112\frac{1}{12}

Pembahasan:

Diketahui:

Rangga memiliki sebuah kotak yang berisi 5 kelereng merah, 4 kelereng kuning, dan 3 kelereng hijau.

Rangga akan mengambil tiga kelereng sekaligus.

Ditanya:

Peluang terambil 2 kelereng berwarna hijau dan 1 kelereng berwarna kuning?

Dijawab:

Misalkan S adalah ruang sampel dari suatu percobaan dengan tiap anggota S memiliki kesempatan muncul yang sama.

Jika A adalah suatu kejadian dan A adalah himpunan bagian dari S, maka peluang kejadian A adalah

P(A)=n(A)n(S)P\left(A\right)=\frac{n\left(A\right)}{n\left(S\right)}

dengan

n(A) adalah banyaknya anggota himpunan A

n(S) adalah banyaknya anggota ruang sampel S

Jika peluang suatu kejadian bernilai 0, maka kejadian tersebut tidak mungkin terjadi. Jika peluang suatu kejadian bernilai 1, maka kejadian tersebut pasti terjadi. Peluang suatu kejadian berkisar antara 0 P(A)1.0\ \le P\left(A\right)\le1.


Dalam hal ini, ruang sampel percobaan tersebut adalah semua kemungkinan terambilnya tiga kelereng. Banyaknya titik sampel dapat diperoleh menggunakan kombinasi, yaitu banyaknya cara mengambil 3 kelereng dari 12 kelereng. Diperoleh

n(S) = C(12,3) =12!9!3!=12×11 ×10 ×9!9!3!=220n\left(S\right)\ =\ C\left(12,3\right)\ =\frac{12!}{9!3!}=\frac{12\times11\ \times10\ \times9!}{9!3!}=220


Misalkan A adalah kejadian ketiga kelereng yang terambil 2 kelereng berwarna hijau dan 1 kelereng berwarna kuning. Banyaknya anggota dari A dapat diperoleh menggunakan kombinasi dan aturan perkalian, yaitu banyaknya cara mengambil 2 kelereng berwarna hijau dari 3 kelereng berwarna hijau dan 1 kelereng berwarna kuning dari 4 kelereng berwarna kuning. Diperoleh

n(A) = C(3,2) ×C(4,1) = 3!1!2!×4!3!1!= 3×4 = 12n\left(A\right)\ =\ C\left(3,2\right)\ \times C\left(4,1\right)\ =\ \frac{3!}{1!2!}\times\frac{4!}{3!1!}=\ 3\times4\ =\ 12


Dengan demikian, peluang terambil 2 kelereng berwarna hijau dan 1 kelereng berwarna kuning adalah P(A) =n(A)n(S) =12220P\left(A\right)\ =\frac{n\left(A\right)}{n\left(S\right)\ }=\frac{12}{220}

K13 Kelas XII Matematika Statistika Peluang Peluang Suatu Kejadian Skor 3
Matematika Wajib LOTS Soal Cerita
Video
20 Januari 2021
Peluang Suatu Kejadian | Matematika Wajib | Kelas XII
Rangkuman
08 April 2020
Bangun Datar | Matematika | Kelas 4 | Tema 4 Berbagai Pekerjaan | Subtema 1 Jenis-jenis pekerjaan...

Siswa

Ingin latihan soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Guru

Ingin akses bank soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Soal Populer Hari Ini

Cek Contoh Kuis Online

Kejar Kuis

Cek Contoh Bank Soal

Kejar Soal