Bank Soal Matematika Wajib SMA Fungsi Trigonometri dan Bilangan Real

Soal

Pilihan Ganda

Diketahui fungsi f(α)=2cos(α)+tanαf\left(\alpha\right)=2\cos\left(-\alpha\right)+\tan\alpha. Nilai dari f(14π)1f\left(\frac{1}{4}\pi\right)-1 adalah ....

A

22\sqrt{2}-2

B

121-\sqrt{2}

C

1+21+\sqrt{2}

D

2-\sqrt{2}

E

2\sqrt{2}

Pembahasan:

Diketahui:

Fungsi f(α)=2cos(α)+tanαf\left(\alpha\right)=2\cos\left(-\alpha\right)+\tan\alpha.

Ditanya:

Nilai dari f(14π)1f\left(\frac{1}{4}\pi\right)-1?

Jawab:

Perlu diingat identitas trigonometri pada sudut-sudut berlawanan tanda, yaitu

sin(θ)=sinθ\sin\left(-\theta\right)=-\sin\theta

cos(θ)=cosθ\cos\left(-\theta\right)=\cos\theta

tan(θ)=tanθ\tan\left(-\theta\right)=-\tan\theta

Akan dicari nilai dari f(14π)1f\left(\frac{1}{4}\pi\right)-1. Diperoleh

f(14π)1=2cos(14π)+tan14π1f\left(\frac{1}{4}\pi\right)-1=2\cos\left(-\frac{1}{4}\pi\right)+\tan\frac{1}{4}\pi-1

f(14π)1=2cos14π+tan14π1\Leftrightarrow f\left(\frac{1}{4}\pi\right)-1=2\cos\frac{1}{4}\pi+\tan\frac{1}{4}\pi-1

f(14π)1=2cos(14π180°π)+tan(14π180°π)1\Leftrightarrow f\left(\frac{1}{4}\pi\right)-1=2\cos\left(\frac{1}{4}\pi\frac{180\degree}{\pi}\right)+\tan\left(\frac{1}{4}\pi\frac{180\degree}{\pi}\right)-1

f(14π)1=2cos(14180°)+tan(14180°)1\Leftrightarrow f\left(\frac{1}{4}\pi\right)-1=2\cos\left(\frac{1}{4}180\degree\right)+\tan\left(\frac{1}{4}180\degree\right)-1

f(14π)1=2cos45°+tan45°1\Leftrightarrow f\left(\frac{1}{4}\pi\right)-1=2\cos45\degree+\tan45\degree-1

f(14π)1=2122+11\Leftrightarrow f\left(\frac{1}{4}\pi\right)-1=2\frac{1}{2}\sqrt{2}+1-1

f(14π)1=2\Leftrightarrow f\left(\frac{1}{4}\pi\right)-1=\sqrt{2}

Video
03 Mei 2021
Menghitung Nilai dari Fungsi Trigonometri dalam Pi
Rangkuman
27 April 2021
Persamaan dan Pertidaksamaan Nilai Mutlak | Matematika | Kelas 10 | KD 3.1 & KD 4.1

Siswa

Ingin latihan soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Guru

Ingin akses bank soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Soal Populer Hari Ini

Cek Contoh Kuis Online

Kejar Kuis

Cek Contoh Bank Soal

Kejar Soal