Bank Soal Matematika Wajib SMA Aplikasi Matriks

Soal

Pilihan Ganda

Nilai x,y,x,y, dan zz yang memenuhi sistem persamaan linear tiga variabel berikut

adalah ....

A

x=51,y=23,z=45x=51,y=23,z=45

B

x=34,y=50,z=23x=34,y=50,z=23

C

x=35,y=51,z=45x=35,y=51,z=45

D

x=23,y=48,z=50x=23,y=48,z=50

E

x=21,y=38,z=45x=21,y=38,z=45

Pembahasan:

Diketahui:

Ditanya:

x,y,z=?x,y,z=?

Jawab:

Nilai x,y,zx,y,z dapat dicari dengan menggunakan metode Cramer

Jika

==

Maka matriks pengganti untuk x,y,zx,y,z adalah

Ax_x == , Ay_y == , Az_z ==

dan penyelesaiannya adalah

x=detAxdet Ax=\frac{\det A_x}{\det\ A}

y=detAydet Ay=\frac{\det A_y}{\det\ A}

z=detAzdet Az=\frac{\det A_z}{\det\ A}

Rumus determinan matriks ordo 3

det A =\det\ A\ =

=((a×e×i)+(b×f×g)+(c×d×h))=\left(\left(a\times e\times i\right)+\left(b\times f\times g\right)+\left(c\times d\times h\right)\right) - ((b×d×i)+(a×f×h)+(c×e×g))\left(\left(b\times d\times i\right)+\left(a\times f\times h\right)+\left(c\times e\times g\right)\right)

Dengan demikian,

Bentuk persamaan matriks untuk sistem persamaan linear tiga variabel di atas yaitu

==

A ==

det A =\det\ A\ =

=((1×0×1)+(1×1×1)+(0×1×1))=\left(\left(1\times0\times1\right)+\left(-1\times-1\times1\right)+\left(0\times1\times1\right)\right) - ((1×1×1)+(1×1×1)+(0×0×1))\left(\left(-1\times1\times1\right)+\left(1\times-1\times1\right)+\left(0\times0\times1\right)\right)

=(0+1+0)(1+(1)+0)=\left(0+1+0\right)-\left(-1+\left(-1\right)+0\right)

=1(2)=1-\left(-2\right)

=3=3

det Ax\det\ A_x ==

=((28×0×1)+(1×1×119)+(0×6×1))=\left(\left(28\times0\times1\right)+\left(-1\times-1\times119\right)+\left(0\times6\times1\right)\right) - ((1×6×1)+(28×1×1)+(0×0×119))\left(\left(-1\times6\times1\right)+\left(28\times-1\times1\right)+\left(0\times0\times119\right)\right)

=(0+119+0)(6+(28)+0)=\left(0+119+0\right)-\left(-6+\left(-28\right)+0\right)

=119(34)=119-\left(-34\right)

=153=153

det Ay\det\ A_y ==

=((1×6×1)+(28×1×1)+(0×1×119))=\left(\left(1\times6\times1\right)+\left(28\times-1\times1\right)+\left(0\times1\times119\right)\right) - ((28×1×1)+(1×1×119)+(0×6×1))\left(\left(28\times1\times1\right)+\left(1\times-1\times119\right)+\left(0\times6\times1\right)\right)

=(6+(28)+0)(28+(119)+0)=\left(6+\left(-28\right)+0\right)-\left(28+\left(-119\right)+0\right)

=(22)+91=\left(-22\right)+91

=69=69

det Az\det\ A_z ==

== ((1×0×119)+(1×6×1)+(28×1×1))\left(\left(1\times0\times119\right)+\left(-1\times6\times1\right)+\left(28\times1\times1\right)\right) - ((1×1×119)+(1×6×1)+(28×0×1))\left(\left(-1\times1\times119\right)+\left(1\times6\times1\right)+\left(28\times0\times1\right)\right)

=(0+(6)+28)(119+6+0)=\left(0+\left(-6\right)+28\right)-\left(-119+6+0\right)

=22(113)=22-\left(-113\right)

=135=135

Maka nilai x, y, zx,\ y,\ z

x=det Axdet A=1533=51x=\frac{\det\ A_x}{\det\ A}=\frac{153}{3}=51

y=det Aydet A=693=23y=\frac{\det\ A_y}{\det\ A}=\frac{69}{3}=23

z=det Azdet A=1353=45z=\frac{\det\ A_z}{\det\ A}=\frac{135}{3}=45

Video
20 November 2021
Aplikasi Matriks
Rangkuman
27 April 2021
Persamaan dan Pertidaksamaan Nilai Mutlak | Matematika | Kelas 10 | KD 3.1 & KD 4.1

Siswa

Ingin latihan soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Guru

Ingin akses bank soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Soal Populer Hari Ini

Cek Contoh Kuis Online

Kejar Kuis

Cek Contoh Bank Soal

Kejar Soal