Bank Soal Matematika SMA Notasi Sigma

Soal

Pilgan

Notasi sigma yang ekuivalen dengan i=18(2k2+8k+10)\sum_{i=1}^8\left(2k^2+8k+10\right) adalah....

A

4i=310k2164\sum_{i=3}^{10}k^2-16

B

3i=310k2163\sum_{i=3}^{10}k^2-16

C

2i=310k2162\sum_{i=3}^{10}k^2-16

D

2i=315k2162\sum_{i=3}^{15}k^2-16

E

2i=310k2172\sum_{i=3}^{10}k^2-17

Pembahasan:

Menggunakan sifat operasi sumasi

  1. i=1nc=cn\sum_{i=1}^nc=cn
  2. i=1ncai=ci=1nai\sum_{i=1}^nca_i=c\sum_{i=1}^na_i
  3. i=1n(ai±bi)=i=1nai±i=1nbi\sum_{i=1}^n\left(a_i\pm b_i\right)=\sum_{i=1}^na_i\pm\sum_{i=1}^nb_i
  4. i=m+1nai=i=1naii=1mai\sum_{i=m+1}^na_i=\sum_{i=1}^na_i-\sum_{i=1}^ma_i
  5. i=mnai=i=m+pn+paip\sum_{i=m}^na_i=\sum_{i=m+p}^{n+p}a_{i-p}

dengan menggunakan sifat 1,2,3,4,5 maka

i=18(2k2+8k+10)=i=310(2(k2)2+8(k2)+10)\sum_{i=1}^8\left(2k^2+8k+10\right)=\sum_{i=3}^{10}\left(2\left(k-2\right)^2+8\left(k-2\right)+10\right)

                                      =i=310(2(k2 4k+4)+8k16+10)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sum_{i=3}^{10}\left(2\left(k^{2\ }-4k+4\right)+8k-16+10\right)

                                      =i=310(2k2 8k+8+8k16+10)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sum_{i=3}^{10}\left(2k^{2\ }-8k+8+8k-16+10\right)

                                      =i=310(2k2 2)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sum_{i=3}^{10}\left(2k^{2\ }-2\right)

                                      =2i=310k2i=3102\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =2\sum_{i=3}^{10}k^2-\sum_{i=3}^{10}2

                                     =2i=310k2(i=1102i=122)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =2\sum_{i=3}^{10}k^2-\left(\sum_{i=1}^{10}2-\sum_{i=1}^22\right)

                                     =2i=310k2(204)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =2\sum_{i=3}^{10}k^2-\left(20-4\right)

                                     =2i=310k216\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =2\sum_{i=3}^{10}k^2-16

Jadi, bentuk yang ekuivalen dengan notasi sigma tersebut adalah

2i=310k216 2\sum_{i=3}^{10}k^2-16\

K13 Kelas XI Matematika Logika Induksi Matematika Notasi Sigma Skor 3
Matematika Wajib Teknik Hitung LOTS
Video
21 Februari 2022
Notasi Sigma | Matematika Wajib | Kelas XI
Rangkuman
08 April 2020
Bangun Datar | Matematika | Kelas 4 | Tema 4 Berbagai Pekerjaan | Subtema 1 Jenis-jenis pekerjaan...

Siswa

Ingin latihan soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Guru

Ingin akses bank soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Soal Populer Hari Ini

Cek Contoh Kuis Online

Kejar Kuis

Cek Contoh Bank Soal

Kejar Soal