Bank Soal Matematika SMA Integral Fungsi Aljabar

Soal

Pilgan

(10x232x54)dx=...\int (10 \sqrt[3]{x^2}-\frac{2}{\sqrt[4]{x^5}})dx=...

A

6xx23+8x4+C6x\sqrt[3]{x^2}+8\sqrt[4]{x}+C

B

6x23+8x4+C6\sqrt[3]{x^2}+\frac{8}{\sqrt[4]{x}}+C

C

6x238x4+C6\sqrt[3]{x^2}-\frac{8}{\sqrt[4]{x}}+C

D

6xx23+8x4+C6x\sqrt[3]{x^2}+\frac{8}{\sqrt[4]{x}}+C

E

6xx238x4+C6x\sqrt[3]{x^2}-\frac{8}{\sqrt[4]{x}}+C

Pembahasan:

Ingat bahwa xmn=xmn\sqrt[n]{x^m}=x^{\frac{m}{n}} dan 1xn=xn\frac{1}{x^n}=x^{-n} maka:

(10x232x54)dx\int(10\sqrt[3]{x^2}-\frac{2}{\sqrt[4]{x^5}})dx

=(10x232x54)dx=\int(10x^{\frac{2}{3}}-\frac{2}{x^{\frac{5}{4}}})dx

=(10x232x54)dx=\int(10x^{\frac{2}{3}}-2x^{-\frac{5}{4}})dx


Integral tersebut terdiri dari beberapa integral yang dijumlahkan, maka kita uraikan terlebih dahulu dengan menggunakan aturan Integral Penjumlahan dan Pengurangan, yaitu:

[f(x)±g(x)]dx=f(x)dx±g(x)dx\int\left[f\left(x\right)\pm g\left(x\right)\right]dx=\int f\left(x\right)dx\pm\int g\left(x\right)dx

Maka menjadi:

(10x232x54)dx\int(10x^{\frac{2}{3}}-2x^{-\frac{5}{4}})dx

=10x23dx2x54dx=\int10x^{\frac{2}{3}}dx-\int2x^{-\frac{5}{4}}dx


Untuk f(x)=axn, n1f\left(x\right)=ax^n,\ n\ne-1 maka:

axndx=an+1xn+1+C\int ax^ndx=\frac{a}{n+1}x^{n+1}+C

Maka didapatkan:

(10x232x54)dx\int(10\sqrt[3]{x^2}-\frac{2}{\sqrt[4]{x^5}})dx

=10x23dx2x54dx=\int10x^{\frac{2}{3}}dx-\int2x^{-\frac{5}{4}}dx

=10(23+1)x(23+1)2(54+1)x(54+1)+C=\frac{10}{(\frac{2}{3}+1)}x^{(\frac{2}{3}+1)}-\frac{2}{(-\frac{5}{4}+1)}x^{(-\frac{5}{4}+1)}+C

=1053x532(14)x14+C=\frac{10}{\frac{5}{3}}x^{\frac{5}{3}}-\frac{2}{(-\frac{1}{4})}x^{-\frac{1}{4}}+C

=6x53+8x14+C=6x^{\frac{5}{3}}+8x^{-\frac{1}{4}}+C; ingat bahwa xn=1xnx^{-n}=\frac{1}{x^n}

=6x53+8x14+C=6x^{\frac{5}{3}}+\frac{8}{x^{\frac{1}{4}}}+C

pangkat pecahan biasa dari x53x^{\frac{5}{3}} diubah dalam pangkat pecahan campuran menjadi x53=x123=x1x23x^{\frac{5}{3}}=x^{1\frac{2}{3}}=x^1x^{\frac{2}{3}} sehingga:

=6xx23+8x14+C=6xx^{\frac{2}{3}}+\frac{8}{x^{\frac{1}{4}}}+C; ingat bahwa xmn=xmnx^{\frac{m}{n}}=\sqrt[n]{x^m}

=6xx23+8x4+C=6x\sqrt[3]{x^2}+\frac{8}{\sqrt[4]{x}}+C

Jadi, (10x232x54)dx=6xx23+8x4+C\int(10\sqrt[3]{x^2}-\frac{2}{\sqrt[4]{x^5}})dx=6x\sqrt[3]{x^2}+\frac{8}{\sqrt[4]{x}}+C

K13 Kelas XI Matematika Aljabar Integral Fungsi Aljabar Integral Fungsi Aljabar Skor 2
Matematika Wajib LOTS Teknik Hitung
Video
17 Februari 2021
Integral Fungsi Aljabar | Matematika Wajib | Kelas XI
Rangkuman
08 April 2020
Bab 5 | Bangun Datar | Matematika | Kelas 4

Siswa

Ingin latihan soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Guru

Ingin akses bank soal, nonton, atau unduh materi belajar lebih banyak?

Buat Akun Gratis

Soal Populer Hari Ini

Cek Contoh Kuis Online

Kejar Kuis

Cek Contoh Bank Soal

Kejar Soal