Himpunan penyelesaian dari persamaan 83x2−2x−8=53x2−2x−88^{3x^2-2x-8}=5^{3x^2-2x-8}83x2−2x−8=53x2−2x−8 adalah ....
HP={−43,2}HP=\left\{-\frac{4}{3},2\right\}HP={−34,2}
HP={−2,43}HP=\left\{-2,\frac{4}{3}\right\}HP={−2,34}
HP={−34,2}HP=\left\{-\frac{3}{4},2\right\}HP={−43,2}
HP={−2,34}HP=\left\{-2,\frac{3}{4}\right\}HP={−2,43}
HP={−4,2}HP=\left\{-4,2\right\}HP={−4,2}
Persamaan 83x2−2x−8=53x2−2x−88^{3x^2-2x-8}=5^{3x^2-2x-8}83x2−2x−8=53x2−2x−8 sama dengan sifat eksponen af(x)=bf(x)a^{f\left(x\right)}=b^{f\left(x\right)}af(x)=bf(x) dimana a dan b>0 serta a dan b ≠1a\ dan\ b>0\ serta\ a\ dan\ b\ \ne1a dan b>0 serta a dan b =1, dapat diselesaikan dengan f(x)=0f\left(x\right)=0f(x)=0
⇔83x2−2x−8=53x2−2x−8\Leftrightarrow8^{3x^2-2x-8}=5^{3x^2-2x-8}⇔83x2−2x−8=53x2−2x−8
⇔3x2−2x−8=0\Leftrightarrow3x^2-2x-8=0⇔3x2−2x−8=0
⇔ (3x+4)(x−2)=0\Leftrightarrow\ \left(3x+4\right)\left(x-2\right)=0⇔ (3x+4)(x−2)=0
⇔ x=−43 dan x=2\Leftrightarrow\ x=-\frac{4}{3}\ dan\ x=2⇔ x=−34 dan x=2
Jadi, HP={−43,2}HP=\left\{-\frac{4}{3},2\right\}HP={−34,2}