Himpunan penyelesaian dari 10log(6x−2)<10log10^{\sqrt{10}}\log\left(6x-2\right)<^{\sqrt{10}}\log1010log(6x−2)<10log10 adalah ....
HP={x ∣ x<13 , xϵR}\text{HP}=\left\{x\ |\ x<\frac{1}{3}\ ,\ x\epsilon R\right\}HP={x ∣ x<31 , xϵR}
HP={x ∣ 13<x<2 }\text{HP}=\left\{x\ |\ \frac{1}{3}<x<2\ \right\}HP={x ∣ 31<x<2 }
HP={x ∣ x>2 , xϵR}\text{HP}=\left\{x\ |\ x>2\ ,\ x\epsilon R\right\}HP={x ∣ x>2 , xϵR}
HP={x ∣ x<−13 , xϵR}\text{HP}=\left\{x\ |\ x<-\frac{1}{3}\ ,\ x\epsilon R\right\}HP={x ∣ x<−31 , xϵR}
HP={x ∣ x>13 , xϵR}\text{HP}=\left\{x\ |\ x>\frac{1}{3}\ ,\ x\epsilon R\right\}HP={x ∣ x>31 , xϵR}