Jika f(x)=4xf\left(x\right)=4xf(x)=4x dan g(x)=3x+1g\left(x\right)=3x+1g(x)=3x+1, maka limx→a(f(x)−g(x))=....\lim\limits_{x\to a}\left(f\left(x\right)-g\left(x\right)\right)=....x→alim(f(x)−g(x))=....
limx→a4x−limx→a(3x+1)\lim\limits_{x\to a}4x-\lim\limits_{x\to a}\left(3x+1\right)x→alim4x−x→alim(3x+1)
limx→a(3x+1)−limx→a4x\lim\limits_{x\to a}\left(3x+1\right)-\lim\limits_{x\to a}4xx→alim(3x+1)−x→alim4x
limx→a3x+limx→a(4x+1)\lim\limits_{x\to a}3x+\lim\limits_{x\to a}\left(4x+1\right)x→alim3x+x→alim(4x+1)
limx→a4x−limx→a(3x−1)\lim\limits_{x\to a}4x-\lim\limits_{x\to a}\left(3x-1\right)x→alim4x−x→alim(3x−1)
limx→a3x−limx→a(4x−1)\lim\limits_{x\to a}3x-\lim\limits_{x\to a}\left(4x-1\right)x→alim3x−x→alim(4x−1)