Diketahui
Himpunan penyelesaian (x,y)\left(x,y\right)(x,y) untuk sistem persamaan kuadrat-kuadrat dua variabel di atas adalah ....
HP={(2,3),(3,−2),(2,13),(−2,13)}HP=\left\{\left(2,3\right),\left(3,-2\right),\left(\sqrt{2},\sqrt{\frac{1}{3}}\right),\left(-\sqrt{2},\sqrt{\frac{1}{3}}\right)\right\}HP={(2,3),(3,−2),(2,31),(−2,31)}
HP={(−3,2),(3,−2),(2167,−167),(−2167,167)}HP=\left\{\left(-3,2\right),\left(3,-2\right),\left(2\sqrt{\frac{16}{7}},-\sqrt{\frac{16}{7}}\right),\left(-2\sqrt{\frac{16}{7}},\sqrt{\frac{16}{7}}\right)\right\}HP={(−3,2),(3,−2),(2716,−716),(−2716,716)}
HP={(0,2)}HP=\left\{\left(0,2\right)\right\}HP={(0,2)}
HP={(2,0),(1,−1)}HP=\left\{\left(2,0\right),\left(1,-1\right)\right\}HP={(2,0),(1,−1)}
HP={(0,0),(23,−32),(1,−1),(23,−23)}HP=\left\{\left(0,0\right),\left(\sqrt{\frac{2}{3}},-\sqrt{\frac{3}{2}}\right),\left(1,-1\right),\left(\sqrt{\frac{2}{3}},-\sqrt{\frac{2}{3}}\right)\right\}HP={(0,0),(32,−23),(1,−1),(32,−32)}