Latihan Matematika Wajib Kelas XI Integral Fungsi Aljabar
# 1
Pilgan

abxndx=...\int \frac{a}{bx^n}dx=...

A

a(n1)bxn1+C\frac{a(n-1)}{bx^{n-1}}+C

B

ab(1n)xn1+C\frac{a}{b(1-n)x^{n-1}}+C

C

anbxn1+C\frac{an}{bx^{n-1}}+C

D

abnxn+1+C\frac{a}{bnx^{n+1}}+C

E

abnx1n+C\frac{a}{bnx^{1-n}}+C

Pembahasan:

Ingat bahwa 1xn=xn\frac{1}{x^n}=x^{-n} maka:

abxndx=abxndx\int\frac{a}{bx^n}dx=\int\frac{a}{b}x^{-n}dx


Untuk f(x)=axn, n1f\left(x\right)=ax^n,\ n\ne-1 maka:

axndx=an+1xn+1+C\int ax^ndx=\frac{a}{n+1}x^{n+1}+C

Sehingga didapatkan:

abxndx\int\frac{a}{bx^n}dx

=abxndx=\int\frac{a}{b}x^{-n}dx

=ab(n+1)x(n+1)+C=\frac{a}{b(-n+1)}x^{(-n+1)}+C; ingat bahwa xn=1xnx^n=\frac{1}{x^{-n}} maka:

=ab(n+1)x(n+1)+C=\frac{a}{b(-n+1)x^{-(-n+1)}}+C; dikombinasikan (n+1)=(1n)\left(-n+1\right)=\left(1-n\right) maka:

=ab(1n)x(n+1)+C=\frac{a}{b(1-n)x^{-(-n+1)}}+C

=ab(1n)xn1+C=\frac{a}{b(1-n)x^{n-1}}+C

Jadi, abxndx=ab(1n)xn1+C\int\frac{a}{bx^n}dx=\frac{a}{b(1-n)x^{n-1}}+C

1 2 3 4 5 6 7 8 9 10