Latihan Matematika Wajib Kelas XI Integral Substitusi
# 1
Pilgan

A

B

C

D

E

Pembahasan:

3t4t2dt\int\sqrt{3t^4-t^2}dt

=t2(3t21)dt=\int\sqrt{t^2(3t^2-1)}dt; ingat bahwa xy=xy\sqrt{xy}=\sqrt{x}\sqrt{y}

=t23t21dt=\int\sqrt{t^2}\sqrt{3t^2-1}dt

=t3t21dt=\int t\sqrt{3t^2-1}dt

Misalkan:

u=3t21u=3t^2-1

du=6t dt\Leftrightarrow du=6t\ dt

dt=du6t\Leftrightarrow dt=\frac{du}{6t}

Sehingga menjadi:

3t4t2dt\int\sqrt{3t^4-t^2}dt

=t3t21dt=\int t\sqrt{3t^2-1}dt

=tu(du6t)=\int t\sqrt{u}(\frac{du}{6t}); sederhanakan t(du6t)=16dut(\frac{du}{6t})=\frac{1}{6}du

=16udu=\int\frac{1}{6}\sqrt{u}du; ingat bahwa x=x12\sqrt{x}=x^{\frac{1}{2}} maka:

=16u12du=\int\frac{1}{6}u^{\frac{1}{2}}du


Untuk f(x)=axn, n1f\left(x\right)=ax^n,\ n\ne-1 maka:

axndx=an+1xn+1+C\int ax^ndx=\frac{a}{n+1}x^{n+1}+C

Sehingga didapatkan:

3t4t2dt\int\sqrt{3t^4-t^2}dt

=16u12du=\int\frac{1}{6}u^{\frac{1}{2}}du

=16(12+1)u(12+1)+C=\frac{1}{6(\frac{1}{2}+1)}u^{(\frac{1}{2}+1)}+C

=16(32)u32+C=\frac{1}{6(\frac{3}{2})}u^{\frac{3}{2}}+C

=19u32+C=\frac{1}{9}u^{\frac{3}{2}}+C

pangkat pecahan biasa dari u32u^{\frac{3}{2}} diubah dalam pangkat pecahan campuran menjadi u32=u112=u1u12u^{\frac{3}{2}}=u^{1\frac{1}{2}}=u^1u^{\frac{1}{2}} sehingga:

=19u1u12+C=\frac{1}{9}u^1u^{\frac{1}{2}}+C; ingat bahwa x12=xx^{\frac{1}{2}}=\sqrt{x}

=19uu+C=\frac{1}{9}u\sqrt{u}+C

=19(3t21)3t21+C=\frac{1}{9}(3t^2-1)\sqrt{3t^2-1}+C

Jadi, 3t4t2dt=19(3t21)3t21+C\int\sqrt{3t^4-t^2}dt=\frac{1}{9}(3t^2-1)\sqrt{3t^2-1}+C

1 2 3 4 5 6 7 8 9 10