Latihan Matematika Wajib Kelas XI Konsep Turunan Fungsi
# 4
Pilgan

Diketahui fungsi ff, gg, dan hh dengan h(x)=f(x)g(x)h\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)} dan g(x)0g\left(x\right)\ne0 . Turunan pertama fungsi hh terhadap xx adalah ....

A

h(x)=g(x)f(x)g(x)f(x)(g(x))2h'\left(x\right)=\frac{g'\left(x\right)f\left(x\right)-g\left(x\right)f'\left(x\right)}{\left(g\left(x\right)\right)^2}

B

h(x)=f(x)g(x)f(x)g(x)(g(x))2h'\left(x\right)=\frac{f'\left(x\right)g\left(x\right)-f\left(x\right)g'\left(x\right)}{\left(g\left(x\right)\right)^2}

C

h(x)=f(x)g(x)+f(x)g(x)(g(x))2h'\left(x\right)=\frac{f'\left(x\right)g\left(x\right)+f\left(x\right)g'\left(x\right)}{\left(g\left(x\right)\right)^2}

D

h(x)=g(x)f(x)g(x)f(x)(g(x))h'\left(x\right)=\frac{g'\left(x\right)f\left(x\right)-g\left(x\right)f'\left(x\right)}{\left(g\left(x\right)\right)}

E

h(x)=f(x)g(x)+f(x)g(x)(g(x))h'\left(x\right)=\frac{f'\left(x\right)g\left(x\right)+f\left(x\right)g'\left(x\right)}{\left(g\left(x\right)\right)}