Diketahui fungsi fff, ggg, dan hhh dengan h(x)=f(x)g(x)h\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}h(x)=g(x)f(x) dan g(x)≠0g\left(x\right)\ne0g(x)=0 . Turunan pertama fungsi hhh terhadap xxx adalah ....
h′(x)=g′(x)f(x)−g(x)f′(x)(g(x))2h'\left(x\right)=\frac{g'\left(x\right)f\left(x\right)-g\left(x\right)f'\left(x\right)}{\left(g\left(x\right)\right)^2}h′(x)=(g(x))2g′(x)f(x)−g(x)f′(x)
h′(x)=f′(x)g(x)−f(x)g′(x)(g(x))2h'\left(x\right)=\frac{f'\left(x\right)g\left(x\right)-f\left(x\right)g'\left(x\right)}{\left(g\left(x\right)\right)^2}h′(x)=(g(x))2f′(x)g(x)−f(x)g′(x)
h′(x)=f′(x)g(x)+f(x)g′(x)(g(x))2h'\left(x\right)=\frac{f'\left(x\right)g\left(x\right)+f\left(x\right)g'\left(x\right)}{\left(g\left(x\right)\right)^2}h′(x)=(g(x))2f′(x)g(x)+f(x)g′(x)
h′(x)=g′(x)f(x)−g(x)f′(x)(g(x))h'\left(x\right)=\frac{g'\left(x\right)f\left(x\right)-g\left(x\right)f'\left(x\right)}{\left(g\left(x\right)\right)}h′(x)=(g(x))g′(x)f(x)−g(x)f′(x)
h′(x)=f′(x)g(x)+f(x)g′(x)(g(x))h'\left(x\right)=\frac{f'\left(x\right)g\left(x\right)+f\left(x\right)g'\left(x\right)}{\left(g\left(x\right)\right)}h′(x)=(g(x))f′(x)g(x)+f(x)g′(x)