Latihan Matematika Peminatan Kelas XII Nilai Limit Fungsi Trigonometri
# 9
Pilgan

Nilai

A

B

C

D

E

Pembahasan:

Subtitusi langsung x=πx=\pi menghasilkan bentuk tak tentu 00\frac{0}{0}.

Ingat bahwa

cos2x=cos2xsin2x\cos2x=\cos^2x-\sin^2x

Dengan demikian, diperoleh

limxπ cos2xsinxcosx=limxπ (cos2xsinxcosxsinx+cosxsinx+cosx )\lim\limits_{x\rightarrow\pi}\ \frac{\cos2x}{\sin x-\cos x}=\lim\limits_{x\rightarrow\pi}\ \left(\frac{\cos2x}{\sin x-\cos x}\cdot\frac{\sin x+\cos x}{\sin x+\cos x}\ \right)

                        =limxπ cos2x(sinx+cosx)sin2xcos2x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\lim\limits_{x\rightarrow\pi}\ \frac{\cos2x\left(\sin x+\cos x\right)}{\sin^2x-\cos^2x}

                        =limxπ cos2x(sinx+cosx)cos2x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\lim\limits_{x\rightarrow\pi}\ \frac{\cos2x\left(\sin x+\cos x\right)}{-\cos2x}

                        =limxπ (sinx+cosx)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\lim\limits_{x\rightarrow\pi}\ -\left(\sin x+\cos x\right)

                        = (sinπ+cosπ)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\ -\left(\sin\pi+\cos\pi\right)

                        = (0+(1))\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\ -\left(0+\left(-1\right)\right)

                        = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\ 1

Jadi, nilai limxπ cos2xsinxcosx=1\lim\limits_{x\rightarrow\pi}\ \frac{\cos2x}{\sin x-\cos x}=1