Persamaan garis normal pada kurva y=g(x)y=g(x)y=g(x) dengan g(x)=cosxcscxg(x)=\frac{\cos x}{\csc x}g(x)=cscxcosx di titik (60°,143)(60\degree, \frac{1}{4}\sqrt3)(60°,413) adalah ....
y=2x−120°+143y=2x-120\degree+\frac{1}{4}\sqrt3y=2x−120°+413
y=2x+120°−143y=2x+120\degree-\frac{1}{4}\sqrt3y=2x+120°−413
y=2x+120°+143y=2x+120\degree+\frac{1}{4}\sqrt3y=2x+120°+413
y=−2x−120°+143y=-2x-120\degree+\frac{1}{4}\sqrt3y=−2x−120°+413
y=−2x+120°−143y=-2x+120\degree-\frac{1}{4}\sqrt3y=−2x+120°−413